Balancing

Years 1 + 2

Scientists are endlessly exploring ideas. In the classroom we call this tinkering, a kind of playful experimentation. The term tinkering relates to taking apart and rebuilding, repairing, or improving something. It's also a mindset and very much an approach to pedagogy.

Learning Intentions

Students will be able to:

- Explore and answer questions.
- Make predictions.
- Participate in guided investigations.
- Sort and represent information through discussion and documentation.

- o 1 balance bar (30 cm dowel)
- 1 balance base (holey golf ball balls)
- 2 extension arms (10cm dowel)
- o 5 weights (1 of each animal)
- 5 clips (attach loops to weights)
- o 1 base (cup)
- 5 fold back clips

Safety

Please consider hazards from small pieces, clips and sticks while using this kit. We recommend having each group on a separate table to stop bumps from other groups toppling the balancing structures.

Instructions

Humans balancing

Discuss:

- What makes something balance?
- What is gravity? What is the effect of gravity?
- What is the centre of balance?
- When might someone need to have good balance?
- What would happen if we weren't balanced when we walk?

Do: choose a balance activity from the *Humans* Balancing list at the end of this document.

- o Acknowledge safety concerns from falling.
- o Run the activity with the students. Some challenges will be harder for adults and men/women due to differences in their centre of gravity.

is in a state of equilibrium. Any forces on the object are balanced by forces in the opposite direction. The **centre of gravity**, also known as the **centre of balance**, is the average position of the force of gravity on an object. Sometimes it is at the object's geometric centre (e.g. the middle of a ruler), whereas other times it isn't (e.g. a ruler with an eraser on one end). An

object can be balanced if it's supported directly under its

centre of gravity.

When an object is **balanced**, it

Discuss:

- What could you do/not do?
- Which balance activity was challenging?
- Why was it challenging? Link back to earlier discussion.

See-Saw

Set-up: Set up see-saw as in picture with ball evenly

Students will work in pairs.

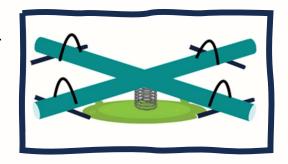
Discuss: how do see-saws work?

O Watch intro clip from Bluey s2 ep27 see-saw to stimulate thinking and conversation. Focus on what needs to be done to balance the seesaw.

Do: challenge students to make the see-saw balance with ALL character weights.

- o Have the students make predictions as to how to balance all the weights.
- o Allow students plenty of tinker time to try balancing the see-saw.
- o The foldback clips can be used as additional weights.

Discuss: What did students try that did and didn't work?


Do: Have students document their design.

Extend

Discuss: different types of seesaws children may have seen in playgrounds. Draw attention to 4-way see-saws.

Do: give two extension arms to each group. Let them choose where to position them in the ball.

- o Have students make predictions based on what changes they will need to make to balance in four directions.
- Allow time for tinkering free play.

Discuss:

- What did the students try that did work?
- What did the students try that didn't work?
- What did you have to change to make it balance in all four directions?

Do: encourage students to document their design.

Humans Balancing

The following activities are our favourites to explore balance and centre of gravity.

One leg

Standing on one leg, experiment with holding your body in different positions. One arm outstretched, two arms, waving or still? Does the leg you are standing on make a difference? Can you stick your bottom out or lean to the side?

We can only keep our balance when our centre of gravity is over our feet. As we move our body our centre of gravity moves with us. If your centre of gravity isn't above your feet you will fall!

THE REAL PROPERTY OF THE PROPE

Leg Lift

Stand where you are, tilt you head slightly to one side of your body and then move the opposite leg off the ground and out to the side of your body. Stand next to a wall with one side of your body touching it. Place your ankle, knee, hip, shoulder, and head against the wall. Now try to lift your other foot off the ground without moving away from the wall.

We can only keep our balance when our centre of gravity is over our feet. As we move our body our centre of gravity moves with us. If your centre of gravity isn't above your feet you will fall!

Pick-up trick

Stand with your back against the wall, feet together and heels against the wall. Place an object on the floor between your feet. Try to pick up the object on the floor without moving your feet or bending your knees.

When you stand straight against the wall, your centre of gravity is over your feet. When you bend forward, your centre of gravity shifts forward. In order to keep your balance, you must move your feet forward or your bum backwards. This would ensure that your centre of gravity is right above your feet to maintain stability. Since the rules of this challenge do not allow you to move your feet and the wall is behind you, there is no way to shift your centre of gravity to maintain balance while trying to pick up the object. If you insist on picking up the object, you will fall flat on your face.

Thumb Press

Place a chair against the wall so that it cannot slide backwards. Sit in the chair with your feet flat on the ground. Have a friend place a thumb in the middle of your forehead. Now try and stand up without pushing your partners hand away.

In this activity your centre of gravity is over the chair rather than over your feet, in order to get up you would need to shift your body forward by putting your head forward, but this is being prevented by the persons' thumb.

Balanced jump

Bend your knees slightly and hold on to the top of your foot. Can you jump backwards? Forwards? Up and down?

While bent over and holding on to your toes, you can jump backwards, but you won't be able to jump forward. When you jump you need to shift your centre of gravity in the direction you want to move, then you move your feet in the same direction to regain your balance. When you are holding onto your toes, jumping backwards is not a problem because you can use your heels to shift your weight. But you can't jump forward because from your bent position you can't move your weight or your centre of gravity forward!

